Affinity labeling of a previously undetected essential lysyl residue in class I fructose bisphosphate aldolase.
نویسندگان
چکیده
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.
منابع مشابه
The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase.
The gene encoding the Escherichia coli Class I fructose-1, 6-bisphosphate aldolase (FBP aldolase) has been cloned and the protein overproduced in high amounts. This gene sequence has previously been identified as encoding an E. coli dehydrin in the GenBanktrade mark database [gene dhnA; entry code U73760; Close and Choi (1996) Submission to GenBanktrade mark]. However, the purified protein over...
متن کاملParacatalytic modification of aldolase: a side reaction of the catalytic cycle resulting in irreversible blocking of two active-site lysyl residues.
Paracatalytic enzyme modifications result from the oxidation of enzyme-substrate carbanions by extrinsic oxidants. During the oxidation of enzyme-activated substrates, transiently reactive intermediates are generated which, without being released from the enzyme, modify groups at the active site. For enzymes producing carbanion intermediates, the combination of the normal substrate with a suita...
متن کاملStructural Similarities between Spinach Chloroplast and Cytosolic Class I Fructose 1,6-Bisphosphate Aldolases : Immunochemical and Amino-Terminal Amino Acid Sequence Analysis.
Immunochemical studies using polyclonal antisera prepared individually against highly purified cytosolic and chloroplast spinach leaf (Spinacia oleracea) fructose bisphosphate aldolases showed significant cross reaction between both forms of spinach aldolase and their heterologous antisera. The individual cross reactions were estimated to be approximately 50% in both cases under conditions of a...
متن کاملFunctional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase.
We have identified a novel hereditary fructose intolerance mutation in the aldolase B gene (i.e. liver aldolase) that causes an arginine-to-glutamine substitution at residue 303 (Arg(303)-->Gln). We previously described another mutation (Arg(303)-->Trp) at the same residue. We have expressed the wild-type protein and the two mutated proteins and characterized their kinetic properties. The catal...
متن کاملFructose - l , 6 - Bisphosphate 1 s an Allosteric Activator of Pyrophosphate : Fructose - 6 - Phosphate 1 - Phosphotransferase ' Tom
The activity of highly purified pyrophosphate:fructose-6-phosphate 1 -phosphotransferase (PFP) from barley (Hordeum vulgare) leaves was studied under conditions where the catalyzed reaction was allowed to approach equilibrium. The activity of PFP was monitored by determining the changes in the levels of fructose-6phosphate, orthophosphate, and fructose-1,6-bisphosphate (Fru1,6-bisP). Under thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 251 10 شماره
صفحات -
تاریخ انتشار 1976